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Abstract

Recently emerging methodology for optimal design of air-
craft treated as a system of interacting physical phenomena
and parts is examined. The methodology is found to coa-
lesce into methods for hierarchic, non-hierarchic, and hybrid
systems, all dependent on sensitivity analysis. A separate
category of methods has also evolved independent of sensi-
tivity analysis, hence suitable for discrete problems. Refer-
ences and numerical applications are cited. Massively par-
allel computer processing is seen as enabling technology for
practical implementation of the methodology.

) Introduction
- By virtue of the physics involved, an aircraft is a sys-
tem whose behavior is & resultant of complex interactions
among many different physical phenomena and hardware
components. Traditionally, designers created vehicles ex-
hibiting the desired behavior by relying on judgment and
intuition, combined with experience and statistics, in ma-
nipulating design variables, and they resorted to analysis for
guidance and verification. Plots limited to 3 or 4 dimensions
were the favorite means for visualization of the quantitative

information. In the last two decades, availability of digital .

computers increased the role of analysis as a guide to the de-
sign decisions and led to the steadily increasing use of formal
opnmnﬁonmethodsutoolafordetmmngthevdueuof
design variables.

The early attempts of simply connecting a design space
search program with a set of analysis programs proved in-
adequate but they inspired development of a number of
alternatives that currently have crystallized in o few ma-
jar, distinctly different approaches: 1) decomposition of the
problem into smaller subproblems coupled in a hierarchic,
non-hierarchic, or hybrid manner; 2) generating a populas-
tion of trisl configurations and subjecting it to a selection
process according to the Darwinian rules of the “survival of
the fittest”; and 3) representing a number of trial configu-
rations strategically placed in the design space by a hyper-
surface to be numerically searched for optimum. All these
approaches tend to strain the present computer technology
to the limit. However, the recent trend in that technology
toward massively parallel processing is coming just in time
to provide means for their cost-effective implementation.

The purpose of the paper is to review the essential fea-
tures of the above approaches to the problem of optimal
design of the aircraft optimization, leaving details to s sam-
ple of references cited without attempting a comprehensive
literature survey. The review emphasizes the methods pur-
sued at the author’s organization at the NASA Langley Re-
search Center, including the disciplinary and system sensi-
tivity analyses that are the foundations of the first of the
above three approaches. The review is illustrated by ou-
accumulated to date. It is an update on the previous such

two reviews, refs. 1 and 2, presented to ICAS in 1984 and
1988.

Data Flow Determines Decomposition Scheme

One may partition the numerical task of supporting the
design process in a number of different ways. For exam-
ple, the partitions (subtasks) may correspond to engineering
disciplines, physical components of the vehicle, or organi-
zational units existing in the company. One way that was
found to be quite useful lets the availability of mathematical
models embodied in the computer codes establish a decom-
position scheme.

To arrive at such a scheme one begins (refs. 3, 4) with
taking an inventory of the major computer codes applicable
for the vehicle design at hand. The inventory is then
represented in a graph-theoretic form as shown in Fig. 1
as a system of interconnected modules that will also be
called subsystems. The system of modules as in Fig. 1 is
a mathematical model of a vehicle being designed. Each
box in the diagram represents a computer code and the lines
with the arrowheads depict the data flow among the codes.
In this representation the codes are treated as black boxes
so that the internal details are invisible and the focus is on
the input/output data. Also, the graph does not in any way
illustrate the execution sequence; i.e., it is not a flowchart,
it is only concerned with the data flow.

Once the data flow is established, one moves on to
determine the data completeness and the exscution sequence
with an aid of a table known as the N-square Matrix (ref. 5)
portrayed in Fig. 2 for the system from Fig. 1. Each of
the n black boxes from Fig. 1 is placed on the diagonal
in a n-by-n table referred to as the N-square Matrix. For
display purposes, eack black box module is defined so that
it is capable of transmitting output horizontally to the right
and to the left and of accepting input vertically from above
or from below, as indicated in Fig. 3. In the table, the data
flow from module § to module j is represented by a dot at the
intersection of i-th row and j-th column; while the absence
of a dot means that no data are being transmitted. A dot
indicates only that the data transmission occurs but does
not define precisely what data iterns are being transmitted.
To define that, a separate record has to be established in a
way to be described later and stored. The output data sets
corresponding to each dot in a row may not be mutually
exclusive—it is possible that the same data items are being
sent from module i to modules j, k, ! etc. However, the
input data sets represented by a dot in a column must be
mutually exclusive, i.e., an input datum for module ¢ must
be coming from only one, and no more than one, source
module. The N-square Matrix so defined is easy to recard
in a digital format module by module. The record of module
k consists of its address i on the diagonal at the intersection
of i-th row with i-th column; the 1, j addresses of the dots in
i-th row and the i,/ addresses in i-th column. For each dot




s0 addressed, there exists a list of the specific data items it
represents.

To establish such an N-square Matrix, one begins with
the modules placed on the diagonal in a random, or the
best guess, order. Next, one scans the entire length of i-th
column above and below the module i position. At [-th
row one compares the i-th module input list with the I-th
module output list to find out what data items from module
! fit as input to module i. The data items so found are
recorded in the i,! sets. After the entire length of column ¢
is searched, the i-th module input data for which no source
has been found are identified as the input external to the
system. Alternatively, s new module or modules may be
added to the system to supply these data. If more than one
source was found for any data item, a choice must be made
to make the input uniquely defined and recorded.

The above systematic procedure defines a data flow
among the modules in the system. It is very effective in
revealing the missing data. Also, it can be generalized be-
yond the computer code systems by broader interpretation
--'of a module as a source of information, be it a computer
code, an experiment, a data graph in a book, or a person’s
expert judgment. In this way, then, collective data knowl-
edge of an entire engineering organization may be examined
and recorded in a manner that is systematic and easy to
store in a computer memory.

After defining the data flow, attention shifts to determin-
ing the best sequence of execution for the modules. In the
convention that assumes execution order along the diagonal
from the upper left corner, each dot in the upper right half
of the matrix marks an instance of the data passed foward
(feedforward). Conversely, a dot in the lower left half marks
the instance of a feedback. Each instance of a feedback im-
plies an iteration that may begin with the best guess at the
input into module { from a downstream module j that itself
may depend, directly or indirectly, on output from module i.
Three such iterations (iterative loops) are indicated in Fig. 2
by the feedbacks from modules 1 to0 3, 2 to 3, and 4 to 1.

The number of the feedback instances and of the asso-
ciated iterations may be reduced by permutating the dots
in the predecessor-successor module pairs on the diagonal
and simultaneously permutating the dots in the rows and
columns associated with these modules. In the system of
Fig. 2, permutation of the modules to positions shown in
Fig. 4 reduces the number of iterative loops from three to
one.

While the conventional wisdom holds that one should at-
tempt to eliminate the iterations or, at least to reduce their
number in order to lessen the overall computational effort,
the advent of parallel computing technology may suggest
the opposite—it makes sense sometimes to reorganize the
module execution sequence so as to create an opportunity
for concurrent execution even if at the price of introducing
iterations that might have been avoided. Such artificially
created concurrent iterative computation may, if the con-
vergence is sufficiently fast, be completed in a time shorter
than the alternative without the iteration. The sequential
snd concurrent executions of modules coupled by data flow
form characteristic patterns of the dots in the feed forward
field as illustrated by two examples in Figs. 5a and b.

If the N-square Matrix is stored digitally as defined
above, its permutations may be computerized to search ei-
ther for iteration-minimizing patterns or for patterns that
maximize opportunities for concurrent computation. Com-
puter programs capable of doing this are beginning to be
available; e.g., ref. 4. An example of an application to a
large system of modules is shown in Figs. 6a and b, which
portray the initial and improved sequences. In the improved
sequence, the iterations have not only been reduced in num-
ber but also clustered. The group of modules tied together
in a cluster of iterations will be referred to as a supermodule.
One supermodule is highlighted with a heavy borderline in
Fig. 6.

The iteration clustering is important because it imparts
a hierarchic structure depicted in Fig. 7 to a system of su-
permodules that contain the clusters of the modules. The
diagram in the figure is a graph-theoretic representation of
the supermodule system termed hierarchic because the data
flow only from a parent module to its children and not in re-
verse or among the children. That is not so inside the super-
modules; hence the structures formed by the modules inside
of supermodules are called non-hierarchic. The hierarchic
structure of supermodules allows their sequential execution
with opportunities for concurrent computations; e.g., super-
modules within the group (2, 4, 6) and (3, 5, 7, 9) may be
processed simultaneously. The entire system of modules and
supermodules such as illustrated in Figs. 6 and 7 is referred
to as a hybrid system. In the extreme, the hybrid system
becomes exclusively hierarchic if each of its supermodules
contains only a single module. In the other extreme, it be-
comes exclusively non-hierarchic if it consists of one and only
one supermodule whose internal modules exhibit data con-
nections such as those illustrated in Figs. 1 and 2.

Thus, the data flow defines the vehicle mathematical
model as a hierarchic, non-hierarchic, or hybrid system.
Optimization schemes for the hierarchic and non-hierarchic
systems will be examined next.

Optimization of a Hierarchic System

A methodology for optimization of systems represented
by mathematical models organized into a hierarchy such
as the one formed by the supermodules in Fig. 7 became
well-established in the last decade in a series of theoretical
publications; e.g., refs. 2, 6, 7, 8, 9, and 10. It will,
therefore, suffice here to restate briefly its foundation for
a procedure that is known as the optimiration by hierarchic
decomposition.

For introductory purposes, the system is simplified to
one of only one parent and one level of several children
subsystems below as in Fig. 8 and is described in an entirely
abstract way. Translation of that abstraction into specifics
of a wvehicle applications may be found in references to
be cited later. The subsystems in Fig. 8 correspond to
the supermodules in Fig. 7 and may further decompose
internally.

The governing equations of the parent system may be
written in the most compact form as

F(Y,X,P)=0 [6))

where F is a function vector, P is a vector of given parame-
ters, X is a vector of the design variables, and Y is a vector



of unknown behavior variables. Solution of eq. (1) is tan-
tamount to analysis of the assembled system (the vehicle
analysis) and it yields Y for an assumed X. Knowing Y and
X, one can establish a vector Z to be an input transmitted
from the parent to a child subsystem

Z=2Z(,X) (2)

where
Y =Y(X)
by virtue of the solution of eq. (1).
In & subeystem, the local design variables are collected
in vector z, the unknown behavior variables are elements in
vector y, and the governing equations are written analogous
to eq. (1) using a vector function f that depends on the
elements of Z as parameters

fv,z,2)=0 ©)

Based on the solution of eq. (3), one may solve for one
isolated subsystem a standard optimization problem for the
independent variables z, while holding its input Z constant

(2A)

min ¢(y, z) subject to g(y,z) <O0; h(y,z) =0 (4)

where ¢(y, z) is an objective function, and g(y, z) and h(y, z)
are the vectors comprising the inequality and equality con-
straint functions. The results of the above optimization are
the constrained minimum of ¢, denoted @iy, the optimal
values of z, designated zopt, and the corresponding values
of constraints designated gopt and hAqpt.

Theuboveoptxm:utmnmcamedoutforewhchﬂdmb—
system. Following that, the assembled system (the parent)
is optimized using X as independent variables. Because X
exerts influence on the subsystem optimal results through
the functional relationships in egs. (3), (2A), and (2), it is
necessary to supply the system-level optimization procedure
with the information about that influence; otherwise, the
procedure could generate a change of X that would benefit
the parent but harm the children.

The influence of X on the subsystem optimization results
may be measured, to the first order of approximation, by the
derivatives of these results with respect to X. To establish
these derivatives, one begins with derivatives with respect
to 2

Omin/0Z; 8Xopt/OZ; Bgopt/DZ; Bhopt/BZ  (5)

Considering the functional relations in egs. (2) and (2A), one
can extend the above by chain-differentiation to establish
derivatives of the optimal results with respect to X

bmin _ Oumin (az .92, BY)
“dX T "8z \9x T &Yy ax
dzopt _ Bt (az 02 8]’)
dX "8z \8X " 8Y 8X
ﬂ - 8_.°§ (82 + 9z 0z 0}’)
dX 9z \6x " oY ox
ﬂoﬁ _’_‘gﬁ (BZ 8z 8}’) (5A)
dX 8z \6x " 8y ox

The sensitivity analysis algorithms of the type reviewed in
ref. 11 may efficiently evaluate the partial derivatives in the

above chain. The optimum sensitivity algorithms described
in refs. 12 and 13 also apply.

The influence of X on the subsystem optimum may now
be expressed in a general form referred to as an influence
function

¥ = ¥(bmin, Zopt, Jopt, hopt) (6)
whose derivatives with respect to X may be obtained by
chain-differentiation using the derivatives from eq. (5A)

d‘)’ 3'7 d¢m + Al d-"—'opt + &y . dgopt
8‘7 dh
+ 55 IX (7

The above derivatives substituted into the linear portion
of the Taylor series provide an approximation to v as a
function of X to represent the influence of X on a particular
subsystem.

- dy
7—‘7opt+‘d—'x’A.x (8)

The above subsystem optimization and sensitivity analysis
may be executed for all the subsystems concurrently because
the subsystems do not directly exchange any data with each
other.

The assembled system optimization that follows solves a
standard optimization problem in the independent design
variables X, the objective function ®, and the constraint
functions G and H

n}(ind’([‘,Y,X) subject to G(I',Y, X) < 0;
H(Y,X)=0 (9)

Inclusion of the information about the influence of X on
the subsystem optima in the above problem may be accom-
plished by using the influence functions v that were defined
in eq. (6) for this very purpose. The v functions for all the
n subsystern may be used to form a function vector I'
-} (10)
that appears as an additional argument in the objective
function and the constraint functions in the optimization
problem of eq. (9), so that

®=®(Y,X); G=(I,Y,X); H=H(Y,X) (11)

Whenever X changes, the corresponding changes to the «
functions in I, may be approximated by the extrapolation
in eq. (8).

The above describes a foundation shared by the meth-
ods forming a methodology for optimization of hierarchic
gystems. The particular methods differ in the formulation
details of the functions ¢, g, h, and v in the subsystem op-
timization. In the system optimization, the differences are
in the formulation details of the functions I', ®, G, and
H, andalsomthewaytheymcorpomte[‘umugumnt
Some of the references that elaborate on these formulation
details were quoted at the beginning of this section. Further
evolution of this methodology continues.

Application experience has accumulated a number of
cases ranging from structural optimization by substructur-
ing documented in refs. 9 and 14 to optimization of a large

F={mmn..



transport aircraft for fuel economy described in ref. 15. Ap-
plication to the control of aeroelastic behavior was reported
in ref. 16 in which the active controls and airframe were
treated as two subsystems in a control-structure system. An
example of a recent application provided in ref. 17 is an op-
timization of a two-stage launch vehicle, depicted schemati-
cally in Fig. 9, to maximize the payload placed into a spec-
ified orbit. In this application, the large and complex prob-
lem comprising optimizations of the lower (booster) stage
and the upper stage vehicles and the launch trajectory was
decomposed into subsystem problems: one for the booster
and one for the upper stage, and a system level problem that
adjusts the orbit parameters to maximize the payload.

In rotorcraft, a long-range, comprehensive development
of optimization methodology for the rotor blades described
in ref. 18 incorporates the hierarchic decomposition as its
theoretical basis.

Optimization of Non-Hierarchic Systems

In a non-hierarchic system, every subgystem may, poten-
tially, influence every other one, e.g., module 1 in Fig. 1.
An approach to optimization of such systems that attracted
attention during the last few years is based on derivatives
of the system behavior (response) with respect to design
variables. These derivatives are useful both for judgmental
decision making and for formal optimization. The essential
feature of the approach is an algorithm for system sensitiv-
ity analysis formulated in ref. 19. That algorithm, to be
discussed next, decomposes the system sensitivity problem
into a set of subsystem sensitivity problems while preserving
the subsystem couplings.

System Sensitivity Analysis

A system of Tully interconnected modules shown in Fig. 10
is an example convenient for introducing the algorithm.
The number of modules limited to three is large enough to
develop a solution pattern that generalizes to any number
of modules. To have a physical reference in mind, consider
the system in Fig. 10 as simulating an actively controlled
flexible wing. Then, let module o be a mathematical model
for aerodynamics, e.g., 8 CFD code, and the modules B and
7 be mathematical models for a structure {a finite element
program) and for a control system.

Prerequisite to the sensitivity algorithm is the system
analysis. It amounts to finding a solution to the governing
equations of the system written as a function vector whose
arguments are the vector of the design variables X and the
vectors of unknown behavior variables Y.

F(X,Ya,Yp,Yy) =0

(12)

Each vector Y is the output from the module identified by
the subscript; for instance, Yg may be a vector of struc-
tural displacements. Each module input consists of X and
Y from the other modules. It also may contain constant pa-
rameters P that are dropped as irrelevant to this discussion.
Typically, solving eq. (12) which may comprise nonlinear
analysis, for instance in the CFD module a, requires itera-
tions among the modules; e.g., iterating between modules o
and B to determine aerodynamic loads and deformations of
a flexible wing.

When the system is solved, each module is temporarily
isolated for the purposes of sensitivity analysis that yields

derivatives of the module output with respect to its inputs
of Y and X. These derivatives are then placed as coefficients
in the set of simultaneous, linear algebraic equations called
the Global Sensitivity Equations (GSE). Specifically, the
derivatives with respect to the Y inputs are collected in the
Jacobian matrices identified by a pair of subscripts. For
example,

Joy = [0Yo/0Y,] (13)

An element 1, in this Jacobian matrix is the derivative
of the pressure coefficient at the i-th location on the wing
surface with respect to the deflection angle of the j-th
control surface. The Jacobian matrices fill the off-diagonal
submatrix positions in a square matrix of coeflicients on the
left-hand side of GSE

—Jga I —Jgy dYg/dX,

—J'ya - ',ﬂ I dY»y/ka

=< 9Yg/0X, (14)
dY,/8X,

where I are the identity submatrices. The derivatives with
respect to a particular element X; of X are placed in the
right-hand side vector. The number of the right-hand side
vectors equals the number of X;'s of interest.

The unknowns in eq. (14) are the derivatives of the system
behavior Y with respect to X. These derivatives account
for the coupling amoung the modules, even though the
derivatives in the Jacobian matrices and in the right-hand
side vector are obtained from the sensitivity analyses of the
modules treated as if they were isolated. To emphasize this,
the derivatives obtained from the solution of eq. (14) are
termed the total derivatives, later referred to as the System
Design Derivatives (SDD), while the other derivatives are
recognized to be partial derivatives.

Typically, the GSE matrix is block-sparse because each
off-diagonal Jacobian corresponds to a particular output-
to-input transmission of the Y data. The same is true
for the right-hand side vector since some modules may not
be directly affected by a particular X;. For instance, an
X representing a cross-sectional dimension in the wing
structure will not influence directly the outputs from the
aerodynamic and control analyses, hence only the right-hand
side vector partition corresponding to the module B will be
non-zero.

Complete details of the GSE derivation and a discussion
of the solvability conditions may be found in ref. 19. In
ref. 20, the above sensitivity analysis was extended to the
derivatives of higher order.

Utility of System Design Derivatives

The SDD’s are useful in several ways. They are effective
in quantifying, for judgmental purposes, the degree of in-
fluence of the design variables on the system behavior. An
example from ref. 3 is illustrated in Fig. 11. The behavior
variable of interest is the range of a general aviation aircraft.
The range is influenced by structural weight fraction of the
total weight, and the C}/C, ratio that is affected by the wing
elastic deformations. Hence, the range will depend to some
extent on the wing cover thickness. Formally, this may be
represented as the behavior of a system depicted on top of




Fig. 11a. The Breguet range equation from the PERFOR-
MANCE module is also shown in Fig. 11a. A highly idealized
finite element model of the wing from the STRUCTURES
module is illustrated in Fig. 11b. Change of the thickness
t in one of the wing cover panels affects, as the arrows in
Fig. 11a show, the weight, elastic deformations, aerodynam-
ics, and ultimately, the terms in the range equation. The
influences on the weight and aerodynamics are conflicting,
hence it is difficult to assess judgmentally the ultimate ef-
fect of t on the range. A precise measure of that effect was
obtained in form of the SDD values from the solution of the
GSE for the system portrayed in Fig. 11a. Normalized values
of the range derivatives with respect to the thickness of the
four cover panels on the top surface of the wing are repre-
sented by vertical bars in Fig. 11b. This type of information
when available on line may foster the designers’ ingight into
the cause-effect relationships that should be considered in
their decisions.

The SDD's play a key role in formal optimization be-
cause most of the optimization algorithms rely on gradients
in searching the design space. A procedure for such opti-
mization is shown in Fig. 12. The system analysis and sen-
gitivity analysis discussed above appear as two consecutive
operations in the chart. An obvious opportunity for con-
current processing occurs in the sensitivity operation. The
operation of approximate analysis usually involves an ex-
trapolation, such as the use of the linear part of the Taylor
series. The iterative loop back to the system analysis in the
procedure is necessary because in the general case of a non-
linear system the SDD’s are valid only in the neighborhood
of the system solution.

It is eseential in this procedure to use normalized (loga-
rithmic) partial and total derivatives in the system sensitiv-
ity analysis to eliminate the effect of differences in the order
of magnitude of the variable values that may exist because
of differences in the units of measure. That effect may be
detrimental to the numerical search. Normalized derivatives
are also easy to interpret because they have a uniform mean-
ing of the percent of change of the dependent variable caused
by one percent increment of the independent variable. An-
other caveat is that the volume of data transmitted from
one module to another should be kept as low as possible by
a judicious use of reduced basis techniques to avoid excessive
dimensionality of the Jacobian matrices in GSE.

It is noted that the procedure of Fig. 12 can also be used
for optimization of a hierarchic system because the GSE
exists for such systems. In that case, the GSE matrix is
populated with the Jacobian matrices on only one side of
the diagonal hence the GSE solution cost is greatly reduced.

Non-hierarchic System Optimization Examples

Applications of the above procedure have been growing
in number much faster than those for hierarchic systems;
apparently the non-hierarchic systems occur relatively more
often. The applications may be categorized by the level of
the analysis employed in the modules.

An example of the application in which the analyses rep-
resenting major engineering disciplines contributing to air-
craft design were deliberately kept at the conceptual design
level described in ref. 21 was reported in ref. 22. The sub-
ject of the study was a short-takeoff, medium-range heavy
transport and the purpose was to show that a formal opti-

mization based on the SDD data obtained from GSE may
be combined with the classical parametric study method to
investigate how the major configuration design variables in-
fluence the aircraft performance. Demonstrating that such
a combined approach may be effective constitutes an im-
portant contribution because conventionally the parametric
studies and the formal optimization based on nonlinear pro-
gramming were regarded to be mutually exclusive methods.

One of many results furnished in ref. 22 is reproduced in
Fig. 13. It shows the take-off gross weight as a function of
the cruise Mach number for a prescribed set of constraints
that included the required range, maximum allowed take-off
run length, etc. The curves labeled 1 to 4 correspond to
the different sets of design variables as follows: 1-—aspect
ratio, wing area; 2—as in set 1 plus the wing sweep angle;
3—as in set 2 plus the airfoil depth; 4—as in set 3 plus taper
and cruise altitude. Each point on the curves represents an
aircraft configuration optimized by means of the procedure
illustrated in Fig. 12 executed for the corresponding Mach
number value treated as a constant parameter, using the
variables specified in the above sets as eleinents of X.

Thus, the study was, in effect, a two-level approach.
Parameters, such as the Mach number in Fig. 13, were
varied systematically as the higher-level design variables.
At 8 selected setting of these variables, the optimization
procedure was carried out operating on the configuration
variables treated as the lower level, more detailed design
variables.

Another application in the same category was described
in ref. 23 in which an unconventional transport aircraft
with three lifting-surfaces was optimized by the procedure of
Fig. 12 using the shape and positions of the lifting surfaces as
design variables. The configuration in its initial state (base-
line) and after the fourth iteration of the optimization proce-
dure is depicted in Fig. 14. In addition to significant numer-
ical results, this application has also demonstrated that the
inherent parallelism in the system sensitivity analysis can be
exploited by having members of the engineering team calcu-
late concurrently the partial derivatives for the GSE.

To close the sample of results in this category, applica-
tions to hypersonic, single-stage-to-orbit aircraft and to a
hypersonic, long-range interceptor were reported in refs. 3
and 24, respectively. In the former, the procedure of Fig. 12
improved the propulsive efficiency index by nearly 13% using
the configuration and structural design variables. This was
regarded as a very significant gain because the initial con-
figuration procedure was already refined by extensive para-
metric studies. A similar improvement was noted in the hy-
personic interceptor case in which a reduction of the take-off
gross weight of 13% was achieved.

An example of an application in which the modules en-
tailed analysis at the level more typical for a preliminary
design phase was reported in refs. 25 and 26. That applica-
tion objective was the development of a methodology for ad-
vanced aircraft optimization; a generic supersonic transport
aircraft depicted in Fig. 15 was selected as a test case. The
above development included systematic organization of the
methodology numerical process by means of the N-square
Matrix discussed previously. The graph-theoretic represen-
tation of the modules in the mathematical model of the su-
personic aircraft is illustrated in Fig. 16, and the sequence



of the module executions that minimizes the number of it-
erative loops is portrayed in Fig. 17 in the N-square Matrix
format. The module execution sequence in that figure was
obtained by means of the software described in ref. 4. Op-
timization results available in refs. 25 and 26 were limited
to those obtained from a system simplified to three modules
shown in Fig. 18. A sample of these results is portrayed
in Figs. 19 and 20. The former shows the contour plots

of the Tsai-Hill criterion constraint which was one of the.

constraints active in the composite cover of the wing. In
the initial design that constraint was well satisfied indicat-
ing that the wing structure had some unnecessary material.
This state corresponds to the initial point on the optimiza-
tion histogram illustrated in latter figure. As indicated by
the descending weight plot in Fig. 20, optimization removed
that unnecessary material and in the process rendered the
Tsai-Hill constrain critical in some areas of the wing cover.

The plot continuation in Fig. 20 shows how the configu-
ration study was progressing, including judgmental, discrete
changes such as raising the wing cover minimum gage; re-
ducing the sandwich core thickness in the wing cover panels;
and switching from a composite material to titanium. The
methodology was apparently effective in bringing the sys-
tem in only very few iterations to a new optimal plateau
after each such judgmental design intervention.

The application examples quoted in the preceding two
sections have been carried out for systems either completely
hierarchic or completely non-hierarchic. So far, no expe-
rience was reported with optimization of a truly hybrid
system. However, considering success of the above two meth-
ods, one may anticipate that the next step will be devel-
opment of a procedure in which a hybrid system of super-
modules, such as the example in Fig. 7, will be optimized
by the hierarchic decomposition method employing the non-
hierarchic system optimization in each supermodule.

Correlating Simplified and Refined Analyzes

Because of their modular nature, both the hierarchic and
non-hierarchic optimization methods described above may
accornmodate disciplinary analyses of various levels of refine-
ment without changing their procedural organization. Con-
sequently, one may anticipate development of a capability for
a coordinated use of analyses at different levels of sophisti-
cation. A step in this direction is a technique described in
refs. 27 and 28.

To summarize that technique, consider a physical phe-
nomenon to be represented by two mathematical models:
a relatively crude but inexpensive to analyze model A and
a relatively refined and correspondingly more expensive to
analyze model B. At the beginning of optimization, one an-
alyzes both models and obtains results R4 and Rp. The
correlation factor 3 is now introduced, defined as

B =Rpg/Ry

Because both R4 and Rp are functions of X design vari-
ables, R4 = R4(X) and Rp = Rp(X), the derivatives of B
exist

dB/dX = (dRp/dX R4 — Rp dRa/dX)/R}

(15)

(16)

where dR4/dX and dRp/dX are obtained from the respec-
tive sensitivity analyses. If R4 and Rp are vectors then

B is a vector, and d8/dX,dR4/dX, and dRp/dX are the
Jacobian matrices.

To save computational costs of repetitive use of model B
in the ensuing steps of the optimization procedure, one may
now use model A instead and apply a correction formula to
approximate Rpg

(RB)approx =Ry (ﬂo + dﬂ/dx AX) (17)
which reflects the influence of X on 8 to the first order of
accuracy. In nonlinear problems,the values of 3, and d3/dX
have to be periodically updated.

Effectiveness of the above technique was demonstrated
in ref. 28 in which the object was wing structure, model
A was the wing plate representation, and model B was
the wing refined finite element model. An example of
one of the (Rp)approx results corrected as in eq. (17) was
the first natural frequency whose error was kept to only
about 1% for the cross-sectional design variable changes
of the order of more than 100%. Ore may anticipate
that type of approximate analysis to be especially useful in
applications that require nonlinear aerodynamics analysis.
Computational costs of that analysis grows exponentially
with its sophistication level relative to the linear analysis
as illustrated in Fig. 21 (ref. 25). Using linear analysis as
model A corrected by S as above could provide a compromise
needed in optimization between accuracy and computational
cost. Encouraging progress in that direction was already
reported in ref. 29.

Concurrent Subspace Optimization (CSSO)

The optimization method for non-hierarchic systems de-
scribed in the aforegoing uses decomposition limited to the
gystem sensitivity analysis only. Once the SDD'’s are ob-
tained, the system optimization is treated as a single prob-
lem. This is in contrast to the hierarchic system optimiza-
tion in which the system optimization itself is divided into
subsystem optimizations. It was recognized in ref. 30 that
it would be advantageous to extend decomposition in non-
hierarchic systems beyond sensitivity analysis so as to opti-
mize the subsystems separately, similar to the way it is done
in the hierarchic systems.

An algorithm to do this was introduced in ref. 30 and,
subsequently, developed and tested in ref. 31. The algorithm
is based on two key ideas: all the subsystems that have an
influence on a constraint should share responsibility for that
constraint satisfaction, and all the subsystems should share
the same objective function.

An example of a wing treated as a system combin-
ing aerodynamics and structures illustrates the above idea.
Each of the two disciplines is being represented as a mod-
ule, and they are coupled through the aerodynamic loads-
deformation data exchange. Suppose that in the initial de-
gign there is a violated stress constraint caused by bending
at the wing root. That constraint might be satisfied by the
purely structural means of cross-sectional resizing, or by re-
ducing the wing aspect ratio which is a variable tradition-
ally in the domain of aerodynamics. The algorithm engages
both disciplines in this case—aerodynamics and structures—
into satisfaction of the stress constraint by dividing its value



between the two disciplines in a proportion determined by a
factor r; i.e.,

9597 9. S %w(1-1) (18)
where g, > 0 is the value of the violated constraint g, and
gg and g, are the parts of g to be satisfied separately as
constraints in the structural and aerodynamic optimizations,
respectively. Both of these optimizations use a common
system-level objective function, which in this example might
be drawn from the aircraft performance; e.g., the flight
range. The two disciplinary optimizations may be executed
concurrently. Following that, a system-level coordinating
optimization is performed to adjust the r factor to improve
the common objective function and to maintain satisfaction
of all the constraints. The method readily generalizes to the
case of n modules in a non-hierarchic system. The subsystem
and system optimizations depend on the sensitivity data
obtained from GSE.

The above method became known as the CSSO because it
is related to a nonlinear mathematical programming method
that formally divides the design space into subspaces. It is
still in the early development stage, but some application
experience beyond the test cases in ref. 31 have begun to
emerge. An example is a solar energy recovery system
whose CSSO-based optimization was reported in ref. 32. It
is anticipated that the CSSO approach has a potential to
become a unified method for bybrid systems including their
purely non-hierarchic extreme.

Disciplinary Sensitivity Analysis

All the optimization methods for hierarchic and non-
hierarchic systems discussed in the aforegoing rely on the
disciplinary sensitivity data. Even though one may obtain
such data by finite-differencing techniques, the computa-
tional costs and potential accuracy problems of these tech-
niques motivated in the recent two decades development of
the disciplinary quasi-analytical sensitivity analyses that are
intrinsically superior to finite differencing. For the optimiza-
tion methods discussed herein, these techniques may be re-
garded as enabling technology.

So far, the quasi-analytical sensitivity analysis has be-
come mature and generally available only for structures
where it is based on differentiation of the governing equa-
tions (the load-deflection equations) and solution of the re-
sulting simultaneous, linear algebraic equations that com-
prise derivatives as unknowns. Reference 11 provides a
survey of literature. Recently, beginning of a similar de-
velopment in CFD has become apparent; e.g., refs. 33-43.
Because the higher order CFD codes are usually very ex-
pensive to execute, continuation of the above development
to the production level i8 important for making the opti-
mization methodology discussed in this writing widely used
in aircraft design.

One may anticipate that with structures and aerodynam-
ics paving the way, development of senmsitivity analysis in
other engineering disciplines will follow. In the meantime,
finite differencing remains available as an inferior but still
usable alternative.

Discussion of sensitivity analysis would be incomplete
without mentioning the new technology of Automatic Differ-
entiation (AD). This technology has been successfully used

in the nuclear industry for a number of years but has only
recently come to the attention of aerospace engineers. The
AD principles are described in ref. 44. In a nutshell, to use
an AD approach for computing derivatives of output Y with
respect to the input X for an existing code C, one has to
use a special AD code, let it be called ADC, as a tool. Sev-
eral ADC codes are now available, commercially and in the
public domain. The ADC reads C, and for a C line that
is an assignment statements of the type a = f(b) it per-
forms symbolic differentiation to obtain da/db. However,
that symbolic differentiation is performed only internally to
evaluate the numerical value of da/db. The derivative ana-
lytical expression is not carried forward; only its numerical
value is. If on a subsequent line one finds the variable a on
the right-hand side; e.g., ¢ = f(a), then a chain differenti-
ation is invoked to obtain dc/db = de/da da/db. The chain
derivatives are concatenated numerically from the beginning
to the end of the code C to obtain the derivatives of dY/dX.
The product of ADC processing C is a new source code,
let it be called NC, which is the original code C augmented
with the calls to the special subroutines in ADC that do the
above differentiation. It is remarkable that NC reproduces
all the loops and if-branches of C.

The new code NC may then be used to produce the same
output Y that C did and, in addition, it yields dY/dX with
computational efficiency better than that of finite differenc-
ing and with accuracy equal to that of analytical differenti-
ation. For an engineer the principal advantage of AD seems
to stem from its bypassing the software development that
otherwise would be required by any of the alternative, dis-
ciplinary, quasi-analytical, sensitivity analysis methods pre-
viously discussed. For that reason alone, AD might be a
potential breakthrough. An example of some initial applica-
tions in engineering was reported in ref. 45.

Genetic Optimization Algorithms

Up to this point in the paper it was tacitly assumed
that the Y = f(X) are continuous functions, the X are
continuous variables, and that there is no problem with local
minima. In many applications these assumptions are not so,
hence it is useful to have methods available that are capable
of handling problems with discontinuities and local minima.
The so-called genetic algorithms are one family of methods
that, in addition to other merits, showed promise to do that.

Genetic algorithms simulate the improvement process
that occurs naturally in the biological evolution of a species.
Adapted to engineering design, the basic conceptual ele-
ments of the algorithm are: 1) random generation of a pop-
ulation of designs that differ by the values of design vari-
ables; 2) evaluating a measure of fitness for each design in
the population; and 3) mating the designs in pairs to pro-
duce offspring. The measure of fitness is a function whose
value depends on the degree of satisfaction, or violation, of
the constraints and on the values of the objective functions
(the approach is intrinsically suitable to handle multiobjec-
tive problems). The probability of an individual design par-
ticipation in the mating process is made to rise with the
individual design measure of fitness. The features of the
mating parents are passed to the offspring by a probabilis-
tic mechanism that ensures that the offspring inherits the
parents’ features and that occasional mutations occur which
produce new offspring features not present in the parents.



Thus, the offspring population replacing the parent popu-
lation has the measures of fitness improved on the average
and, due to the mutations, superior features occur in some
offspring to initiate a new line of evolution as a way out of
global minima.

To date no vehicle system applications have been re-
ported. However, encouraging results from optimization of
wing structure, described in ref. 46, showed that the ap-
proach was very effective in homing on the neighborhood of
the global optimum in the design space. This application
also showed that for locating the optimum more precisely in
that neighborhood, it is better to switch to a gradient-based
search. This suggests that the genetic algorithms may be
regarded as complementary to that type of search. Regard-
ing the applicability range, it is expected that the computer
technology progress will reduce the cost of generating large,
statistically significant populations required by the genetic
approach to the level where application to entire vehicle sys-
tems will become economically feasible.

Design of Experiments Methods

Recently, a renewed interest was noted in optimization
methods based on the Design of Experiments (DOE) ap-
proach. Under that approach, a number of designs is placed
as design points in the design variable space spanning the
domain of interest. Each such design behavior may be eval-
uated by any suitable method, including experiments, statis-
tics from past experience, etc. Behavior variable of interest
may be approximated as an explicit function, called the re-
sponse function, fitted to the design points. Generation of
the designs, their evaluation, and the response function fit-
ting constitute an initial investment to be recouped in opti-
mization in which the need for behavior data may then be
satisfied at a negligible computational cost by evaluating the
explicit response functions.

This approach has a long history dating back to ref. 47.
An example of usefulness for aircraft design is an application
to transport aircraft engine selection in ref. 48. The method
does not require sensitivity analysis of the designs placed
in the design space, hence it can accommodate discrete
variables. Another advantage of the method is that the
design points may be generated concurrently and new ones
may be added as the design process progresses. On the
other hand, the method has a major drawback of requiring a
large number of design points that grows exponentially with
the number of the design variables. That growth can be
moderated somewhat by various statistically based schemes
for strategic placement of a reduced number of the design
points, but its exponential character cannot be removed
because of the combinatorial nature of the method.

Two reasons may be discerned for renewed interest in
DOE. The first one is the current emphasis on taking into
account in designing the entire life cycle of the product, in-
cluding manufacturing, maintenance, and disposal, all dom-
inated by cost. These considerations are difficult to model
mathematically in the same sense as conventional engineer-
ing disciplines but can be accounted for by statistical and
experimental data at the design points. The second reason
is the success of the orthogonal arrays, also referred to as the
Taguchi arrays, in systematic improvement of the industrial
product quality. These arrays readily adapt to DOE as a
tool for limiting the number of the design points. From a

DOE standpoint, the orthogonal array technique is simply
a way to place a set of design points in the design variable
space in such a way that the maximum of information may
be extracted from it. This is achieved by making the vectors
comprising the coordinates of the design points orthogonal
to each other; each such vector constitutes a column in the
orthogonal array. The vector orthogonality removes duplica-
tion of the information contained in each design point. The
technique does not eliminate the exponential growth prob-
lem mentioned above, and the orthogonal arrays commonly
available in a tabular form usually represent each variable
at no more than three settings which only accounts for the
lowest order of nonlinearity. One also needs a prerequisite
knowledge of the variable interactions to choose the best
array type for the application at hand. A comprehensive
assessment of the orthogonal arrays in the DOE context is
given in ref. 49.

Despite the limitations, the DOE approach enhanced by
the orthogonal arrays proved its usefulness in a growing
number of applications. An excellent recent example is the
optimization of a single-stage-to-orbit vehicle in ref. 50.

Massively Parallel Computers

All the methods discussed herein strain the present ca-
pacity of the computer. The CPU time required by CFD
(ilustrated in Fig. 21), amplified by the repetitive use of
analysis in design, makes that point very clear. Fortunately,
the exponential growth of computer speed and capacity is
certain to continue even though the speed of a conventional
serial machine appears to be approaching natural physical
limits. The new way to continue that growth is through
development of massively parallel computers. A systematic
development program in that direction is described in ref. 51.
The aim is to bring the effective computational speed mea-
sured in the floating point operations per second into the
trillion range. This will require parallelization of computing
both at the equation level and at the module level. In the
former, the internal code in a module must be rewritten for
maximum use of concurrently operating processors. In the
latter, the internally unchanged modules execute simultane-
ously, each on its own processor.

The methods discussed in this paper are all amenable to
parallelization at the module level, preserving the investment
in existing software. Beginning at the module level with the
existing software will provide at least partial benefits from
the parallel computing early, before massive investment in a
new software parallelized at both the equation and module
level pays off.

Conclusions

Starting from an axiomatic “divide and conquer” premise,
the basic schemes for decomposing the large optimization
problem of aircraft into smaller problems were examined. It
was shown that if the vehicle system mathematical model is
considered as an assemblage of modules, each module repre-
senting a8 mathematical model of a physical phenomenon (an
engineering discipline) or behavior of a vehicle component,
then the data flow among the modules defines three basic
system organizations: hierarchic, non-hierarchic, or hybrid.

Key ideas and essential features of the optimigation meth-
ods that have evolved for each of the above system organiza-
tions were discussed with a selection of references cited for



more details. Particular attention was given to the sensitiv-
ity analyses at the discipline and system levels, which are at
the core of each of the above methods. Alternative methods
were pointed out for applications in which discontinuities
of the functions and variables, local minima, and scarcity
of analytical models limit usability of the derivative-based
methods.

The picture emerging from this review is that of sev-
eral diverse methods and techniques coalescing into a new,
rapidly crystallizing methodology that enables optimization
of aerospace vehicles as systems in which everything affects
everything else. Far from attempting to supplant the human
designer, the methodology is predicated on decomposing the
large system optimization problems into smaller ones to be
worked concurrently by groupe of specialists in engineering
organization supported by parallel processing of data.

Development needed to accelerate application of the
above methodology entails sensitivity analyses in the key
engineering disciplines, other than structures for which such
analysis has already been established. The new technol-
ogy of automated differentiation has a potential for facili-
tating this development which must also include techniques
for trading accuracy for execution speed in mathematical
modeling. Finally, the quantum jump in computing speed
promised by the new technology of massively parallel com-
puters is seen as a necessary part in the subject methodology
development.

The reviewed methodology has the potential for support-
ing designers in their work with nearly instantaneous an-
swers to quantitative “what if” questions. The result will be
a mind-computer, synergistic environment in which human
creativity will thrive.
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Figure 5. N-square Matrix patterns for executions:
a) sequential, b) parallel.
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Figure 6. Large system execution: a) initially random,
b) improved organization; in an N-square Ma-

trix format.
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Figure 7. A hierarchic system.
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Figure 8. Data flow in a hierarchic system optimisation
by decomposition.
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A generic upper stage

Figure 9. Two-stage lsunch vehicle with a generic upper
stage with payload.
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Figure 11. a) System of mathematical models, the Breguet's
formula, and the channels of influence of the
wing cover thickness on the aircraft range;
b) Vertical bars illustrate magnitudes of deriva-
tives of range with respect to thickness (normal-
indbythehrgutpositiveduivnﬁvevdne).



SENSITIVITY-BASED SYSTEM OPTIMIZATION
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Figure 12. Flowchart of non-hierarchic system optimiza- (feet)
tion procedure.
Figure 15. A generic supersonic transport configuration.
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Figure 13. Minimum Take-off Gross Weight (Wto) as func- e | e

tion of Mach number for cases defined in the
text.
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with three lifting surfaces: the baseline and
after the 4th iteration optimization.

. Figure 16. Modules for supersonic transport analysis in a

graph-theoretic format.
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Figure 17. Modules for supersonic transpart analysis se-

quenced for a minimum of iterative loops in an
N-square Matrix format.
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Figure 18. Supersonic transport analysis simplified to three
disciplines.
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Figure 19. Supersonic transport wing: contour plots of the
Tsai-Hill criterion values for the wing composite

material covers.
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Figure 20. History of the wing bending material weight in
the optimization process.
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various levels of fidelity.






Form Approved
REPORT DOCUMENTATION PAGE D e ov0e0188
Public reporting burden for this cotiection of inf on is e ted to ge 1 hour per rewp including the time for reviewing instructions. searching existing date sources,
collection of information. Send comments regarding this burden estimate or any other sspect of this

gathering and maintaining the data needed, and completing and reviewing the
coliection of informstion, including 3 tions for reducing thiy burden. (o Washington Headauarters Services,

Directorate for information Operstions and Reports, 1215 Jetterson
22024302, and to the Office of Management and Budget, Paperwork 3

Aeduction Project (0704-0188), Washington, DC 20503.

Davn Highway, Suite 1204, Arlington, VA 2
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
May 1992 Technical Memorandum
S. FUNDING NUMBERS

4. TITLE AND SUBTITLE
Aircraft Optimization by a System Approach:
Achievements and Trends 505-63-50-06

6. AUTHOR(S)
Jaroslaw Sobieszczanski-Sobieski

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORY NUMBER

NASA Langley Research Center
Hampton, VA 23665-5225

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
National Aeronautics and Space Administration AGENCY REPORT NUMBER
Washington, DC 20546-0001

NASA TM-107622

11. SUPPLEMENTARY NOTES
To be presented at the 18th ICAS Congress, in Beijing, China, on

September 20-25, 1992

123, DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited

Subject Category 05

13. ABSTRACT (Maximum 200 words)

craft treated as a system of

Recently emerging methodology for optimal design of air
The methodology is found to

interacting phyiscal phenomena and parts is examined.
coalesce into methods for hierarchic, non-hierarchic, and hybrid systems all
dependent on sensitivity analysis. A separate category of methods has 3also evolved
independent of sensitivity analysis, hence suitable for discrete problems.
References and numerical applications are cited. Massively parallel computer
processing is seen as enabling technology for practical implementation of the

methodology.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Aerospace; alrcraft; computers; design; interactive; _______lS
optimization; parallel processing; sensitivity system; synthesis 16.PmCEﬁ§DE
A
Mmﬁ
17. SECURITY CLASSIFICATION |18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified
Standard Form 298 (Rev. 2-89)

NSN 7540-01-280-5500
Prescnbed by ANSI Std. 239-18
296-102




